Transmission Control Protocol (TCP) uses a network congestion avoidance algorithm that includes various aspects of an additive increase/multiplicative decrease (AIMD) scheme, with other schemes such as slow-start in order to achieve congestion avoidance.
The TCP congestion avoidance algorithm is the primary basis for congestion control in the Internet.[1][2][3][4][5]
Contents |
Two such variations are those offered by TCP Tahoe and Reno. The two algorithms were retrospectively named after the 4.3BSD operating system in which each first appeared (which were themselves named after Lake Tahoe and the city of Reno, Nevada). The “Tahoe” algorithm first appeared in 4.3BSD-Tahoe (which was made to support the CCI Power 6/32 “Tahoe” minicomputer), and was made available to non-AT&T licensees as part of the “4.3BSD Networking Release 1”; this ensured its wide distribution and implementation. Improvements, described below, were made in 4.3BSD-Reno and subsequently released to the public as “Networking Release 2” and later 4.4BSD-Lite. The “TCP Foo” names for the algorithms appear to have originated in a 1996 paper by Kevin Fall and Sally Floyd.[6]
To avoid congestion collapse, TCP uses a multi-faceted congestion control strategy. For each connection, TCP maintains a congestion window, limiting the total number of unacknowledged packets that may be in transit end-to-end. This is somewhat analogous to TCP's sliding window used for flow control. TCP uses a mechanism called slow start[7] to increase the congestion window after a connection is initialized and after a timeout. It starts with a window of two times the maximum segment size (MSS). Although the initial rate is low, the rate of increase is very rapid: for every packet acknowledged, the congestion window increases by 1 MSS so that the congestion window effectively doubles for every round trip time (RTT). When the congestion window exceeds a threshold ssthresh the algorithm enters a new state, called congestion avoidance. In some implementations (e.g., Linux), the initial ssthresh is large, and so the first slow start usually ends after a loss. However, ssthresh is updated at the end of each slow start, and will often affect subsequent slow starts triggered by timeouts.
Congestion avoidance: As long as non-duplicate ACKs are received, the congestion window is additively increased by one MSS every round trip time. When a packet is lost, the likelihood of duplicate ACKs being received is very high (it's possible though unlikely that the stream just underwent extreme packet reordering, which would also prompt duplicate ACKs). The behavior of Tahoe and Reno differ in how they detect and react to packet loss:
Fast Recovery. (Reno Only) In this state, TCP retransmits the missing packet that was signaled by three duplicate ACKs, and waits for an acknowledgment of the entire transmit window before returning to congestion avoidance. If there is no acknowledgment, TCP Reno experiences a timeout and enters the slow-start state.
Both algorithms reduce congestion window to 1 MSS on a timeout event.
Until the mid 1990s, all of TCP's set timeouts and measured round-trip delays were based upon only the last transmitted packet in the transmit buffer. University of Arizona researchers Larry Peterson and Lawrence Brakmo introduced TCP Vegas, in which timeouts were set and round-trip delays were measured for every packet in the transmit buffer. In addition, TCP Vegas uses additive increases in the congestion window. This variant was not widely deployed outside Peterson's laboratory.
However, TCP Vegas was deployed as default congestion control method for DD-WRT firmwares v24 SP2.[9]
TCP New Reno improves retransmission during the fast recovery phase of TCP Reno. During fast recovery, for every duplicate ACK that is returned to TCP New Reno, a new unsent packet from the end of the congestion window is sent, to keep the transmit window full. For every ACK that makes partial progress in the sequence space, the sender assumes that the ACK points to a new hole, and the next packet beyond the ACKed sequence number is sent.
Because the timeout timer is reset whenever there is progress in the transmit buffer, this allows New Reno to fill large holes, or multiple holes, in the sequence space - much like TCP SACK. Because New Reno can send new packets at the end of the congestion window during fast recovery, high throughput is maintained during the hole-filling process, even when there are multiple holes, of multiple packets each. When TCP enters fast recovery it records the highest outstanding unacknowledged packet sequence number. When this sequence number is acknowledged, TCP returns to the congestion avoidance state.
A problem occurs with New Reno when there are no packet losses but instead, packets are reordered by more than 3 packet sequence numbers. When this happens, New Reno mistakenly enters fast recovery, but when the reordered packet is delivered, ACK sequence-number progress occurs and from there until the end of fast recovery, every bit of sequence-number progress produces a duplicate and needless retransmission that is immediately ACKed.
New Reno performs as well as SACK at low packet error rates, and substantially outperforms Reno at high error rates.
TCP Hybla aims to eliminate penalization of TCP connections that incorporate a high-latency terrestrial or satellite radio link, due to their longer round trip times. It stems from an analytical evaluation of the congestion window dynamics, which suggests the necessary modifications to remove the performance dependence on RTT.
Binary Increase Congestion control is an implementation of TCP with an optimized congestion control algorithm for high speed networks with high latency (called LFN, long fat networks, in RFC 1072). BIC is used by default in Linux kernels 2.6.8 through 2.6.18.
CUBIC is a less aggressive and more systematic derivative of BIC, in which the window is a cubic function of time since the last congestion event, with the inflection point set to the window prior to the event. CUBIC is used by default in Linux kernels since version 2.6.19.
Compound TCP is a Microsoft implementation of TCP which maintains two different congestion windows simultaneously, with the goal of achieving good performance on LFNs while not impairing fairness. It has been widely deployed with Microsoft Windows Vista and Windows Server 2008 and has been ported to older Microsoft Windows versions as well as Linux.
TCP New Reno is the most commonly implemented algorithm, SACK support is very common and is an extension to Reno/New Reno. Most others are competing proposals which still need evaluation. Starting with 2.6.8 the Linux kernel switched the default implementation from Reno to BIC. The default implementation was again changed to CUBIC in the 2.6.19 version.
When the per-flow product of bandwidth and latency increases, regardless of the queuing scheme, TCP becomes inefficient and prone to instability. This becomes increasingly important as the Internet evolves to incorporate very high-bandwidth optical links.
TCP Interactive (iTCP) allows applications to subscribe to TCP events and respond accordingly enabling various functional extensions to TCP from outside TCP layer. Most TCP congestion schemes work internally. iTCP additionally enables advanced applications to directly participate in congestion control such as to control the source generation rate.
Zeta-TCP detects the congestions from both the latency and loss rate measures, and applies different CWND backoff strategies based on the likelihood of the congestions to maximize the goodput. It also has a couple of other improvements to accurately detect the packet losses, avoiding RTO retransmission; and accelerate/control the inbound (download) traffic.
Kurose, James; Ross, Keith (2008). Computer Networking - A Top-Down Approach (4thth ed.). Addison Wesley. ISBN 978-0136079675.
Afanasyev, A.; N. Tilley, P. Reiher, and L. Kleinrock (2010). "Host-to-host congestion control for TCP". IEEE Communication Surveys and Tutorials 12 (3). http://lasr.cs.ucla.edu/afanasyev/data/files/Afanasyev/Host-to-host%20congestion%20control%20for%20TCP.pdf.